
i
i

“oce” — 2014/5/7 — 15:52 — page 1 — #1 i
i

i
i

i
i

Lecture Notes on Optimal Estimation and Control

Moritz Diehl

May 7, 2014

i
i

“oce” — 2014/5/7 — 15:52 — page 2 — #2 i
i

i
i

i
i

2

i
i

“oce” — 2014/5/7 — 15:52 — page 3 — #3 i
i

i
i

i
i

Contents

1 Introduction 5
1.1 Dynamic System Classes . 6
1.2 Continuous Time Systems . 10
1.3 Discrete Time Systems . 15
1.4 Optimization Problem Classes . 18
1.5 Overview and Notation . 21

2 Nonlinear Optimization 25
2.1 Important Special Classes . 26
2.2 First Order Optimality Conditions 28
2.3 Second Order Optimality Conditions 30

3

i
i

“oce” — 2014/5/7 — 15:52 — page 4 — #4 i
i

i
i

i
i

4 CONTENTS

i
i

“oce” — 2014/5/7 — 15:52 — page 5 — #5 i
i

i
i

i
i

Chapter 1

Introduction

Optimal control regards the optimization of dynamic systems. In this lecture we identify
dynamic systems with processes that are evolving with time and that can be character-
ized by states x that allow us to predict the future behavior of the system. If the state
is not known, we first need to estimate it based on the available measurement infor-
mation. The estimation process is very often optimization-based and uses the same
optimization methods that are used for optimal control. This is the reason why this
lecture bundles both optimal control and estimation in one single course. Often, a dy-
namic system can be controlled by a suitable choice of inputs that we denote as controls
u in this script. In optimal control, these controls shall be chosen optimally in order to
optimize some objective function and respect some constraints.

For optimal control, we might think of an electric train where the state x consists
of the current position and velocity, and where the control u is the engine power that
the train driver can choose at each moment. We might regard the motion of the train on
a time interval [tinit, tfin], and the objective could be to minimize the consumed energy
to drive from Station A to Station B, and one of the constraints would be that the train
should arrive in Station B at the fixed final time, tfin.

On the other hand, in optimization-based estimation, we treat unknown distur-
bances as inputs, and the objective function is the misfit between the actual measure-
ments and their model predictions. The resulting optimization problems are mathemat-
ically of the same form as the problems of optimal control, with the disturbances as
controls. For this reason, we focus the larger part of the course on the topic “optimal
control”. At several occasions we specialize to estimation problems as a special case.

A typical property of a dynamic system is that knowledge of an initial state xinit

and a control input trajectory u(t) for all t ∈ [tinit, tfin] allows one to determine the
whole state trajectory x(t) for t ∈ [tinit, tfin]. As the motion of a train can very well be
modelled by Newton’s laws of motion, the usual description of this dynamic system is
deterministic and in continuous time and with continuous states.

But dynamic systems and their mathematical models can come in many variants,
and it is useful to properly define the names given commonly to different dynamic
system classes, which we do in the next section. Afterwards, we will discuss two
important classes, continuous time and discrete time systems, in more mathematical

5

i
i

“oce” — 2014/5/7 — 15:52 — page 6 — #6 i
i

i
i

i
i

6 CHAPTER 1. INTRODUCTION

detail, before we give an overview of optimization problem classes and finally outline
the contents of the lecture chapter by chapter.

1.1 Dynamic System Classes

In this section, let us go, one by one, through the many dividing lines in the field of
dynamic systems.

Continuous vs Discrete Time Systems

Any dynamic system evolves over time, but time can come in two variants: while
the physical time is continuous and forms the natural setting for most technical and
biological systems, other dynamic systems can best be modelled in discrete time, such
as digitally controlled sampled-data systems, or games.

We call a system a discrete time system whenever the time in which the system
evolves only takes values on a predefined time grid, usually assumed to be integers. If
we have an interval of real numbers, like for the physical time, we call it a continuous
time system. In this lecture, we usually denote the continuous time by the variable
t ∈ R and write for example x(t). In case of discrete time systems, we use an index,
usually k ∈ N, and write xk for the state at time point k.

Continuous vs Discrete State Spaces

Another crucial element of a dynamic system is its state x, which often lives in a
continuous state space, like the position of the train, but can also be discrete, like the
position of the figures on a chess game. We define the state space X to be the set of all
values that the state vector x may take. If X is a subset of a real vector space such as
Rnx or another differentiable manifold, we speak of a continuous state space. If X is a
finite or a countable set, we speak of a discrete state space. If the state of a system is
described by a combination of discrete and continuous variables we speak of a hybrid
state space.

A multi-stage system is the special case of a system with hybrid state space that
develops through a sequence of stages and where the state space on each stage is con-
tinuous. An example for a multi-stage system is walking, where consecutive stages
are characterized by the number of feet that are on the ground at a given moment. For
multi-stage systems, the time instant when one stage ends and the next one starts can
often be described by a switching function. This function is positive on one and nega-
tive on the other stage, and assumes the value zero at the time instant that separates the
stages.

Another special case are systems that develop in a continuous state space and in
continuous time, but are sometimes subject to discontinuous jumps, such as bouncing
billiard balls. These can often be modelled as multi-stage systems with switching func-
tions, plus so called jump conditions that describe the discontinuous state evolution at
the time instant between the stages.

i
i

“oce” — 2014/5/7 — 15:52 — page 7 — #7 i
i

i
i

i
i

1.1. DYNAMIC SYSTEM CLASSES 7

Finite vs Infinite Dimensional State Spaces

The class of continuous state spaces can be further subdivided into the finite dimen-
sional ones, whose state can be characterized by a finite set of real numbers, and the in-
finite dimensional ones, which have a state that lives in function spaces. The evolution
of finite dimensional systems in continuous time is usually described by ordinary dif-
ferential equations (ODE) or their generalizations, such as differential algebraic equa-
tions (DAE).

Infinite dimensional systems are sometimes also called distributed parameter sys-
tems, and in the continuous time case, their behaviour is typically described by partial
differential equations (PDE). An example for a controlled infinite dimensional system
is the evolution of the airflow and temperature distribution in a building that is con-
trolled by an air-conditioning system.

Continuous vs Discrete Control Sets

We denote by U the set in which the controls u live, and exactly as for the states, we
can divide the possible control sets into continuous control sets and discrete control
sets. A mixture of both is a hybrid control set. An example for a discrete control set is
the set of gear choices for a car, or any switch that we can can choose to be either on
or off, but nothing in between.

In the systems and control community, the term hybrid system denotes a dynamic
system which has either a hybrid state or hybrid control space, or both. Generally
speaking, hybrid systems are more difficult to optimize than systems with continuous
control and state spaces.

However, an interesting and relevant class are hybrid systems that have continuous
time and continuous states, but discrete controls. They might be called hybrid systems
with external switches or integer controls and turn out to be tremendously easier to op-
timize than other forms of hybrid systems, if treated with the right numerical methods.

Time-Variant vs Time-Invariant Systems

A system whose dynamics depend on time is called a time-variant system, while a
dynamic system is called time-invariant if its evolution does not depend on the time
and date when it is happening. As the laws of physics are time-invariant, most technical
systems belong to the latter class, but for example the temperature evolution of a house
with hot days and cold nights might best be described by a time-variant system model.
While the class of time-variant systems trivially comprises all time-invariant systems, it
is an important observation that also the other direction holds: each time-variant system
can be modelled by a nonlinear time-invariant system if the state space is augmented
by an extra state that takes account of the advancement of time, and which we might
call the “clock state”.

Linear vs Nonlinear Systems

If the state trajectory of a system depends linearly on the initial value and the control
inputs, it is called a linear system. If the dependence is affine, one should ideally speak

i
i

“oce” — 2014/5/7 — 15:52 — page 8 — #8 i
i

i
i

i
i

8 CHAPTER 1. INTRODUCTION

of an affine system, but often the term linear is used here as well. In all other cases, we
speak of a nonlinear system.

A particularly important class of linear systems are linear time invariant (LTI) sys-
tems. An LTI system can be completely characterized in at least three equivalent ways:
first, by two matrices that are typically called A and B; second, by its step response
function; and third, by its frequency response function. A large part of the research in
the control community is devoted to the study of LTI systems.

Controlled vs Uncontrolled Dynamic Systems

While we are in this lecture mostly interested in controlled dynamic systems, i.e. sys-
tems that have a control input that we can choose, it is good to remember that there
exist many systems that cannot be influenced at all, but that only evolve according to
their intrinsic laws of motion. These uncontrolled systems have an empty control set,
U = ∅. If a dynamic system is both uncontrolled and time-invariant it is also called an
autonomous system.

Note that an autonomous system with discrete state space that also lives in discrete
time is often called an automaton.

Within the class of controlled dynamic systems, of special interest are the so called
controllable systems, which have the desirable property that their state vector x can be
steered from any initial state xinit to any final state xfin in a finite time with suitably
chosen control input trajectories. Many controlled systems of interest are not com-
pletely controllable because some parts of their state space cannot be influenced by the
control inputs. If these parts are stable, the system is called stabilizable.

Stable vs Unstable Dynamic Systems

A dynamic system whose state trajectory remains bounded for bounded initial val-
ues and controls is called a stable system, and an unstable system otherwise. For au-
tonomous systems, stability of the system around a fixed point can be defined rigor-
ously: for any arbitrarily small neighborhood N around the fixed point there exists a
region so that all trajectories that start in this region remain in N . Asymptotic stability
is stronger and additionally requires that all considered trajectories eventually converge
to the fixed point. For autonomous LTI systems, stability can be computationally char-
acterized by the eigenvalues of the system matrix.

Deterministic vs Stochastic Systems

If the evolution of a system can be predicted when its initial state and the control inputs
are known, it is called a deterministic system. When its evolution involves some random
behaviour, we call it a stochastic system.

The movements of assets on the stockmarket are an example for a stochastic sys-
tem, whereas the motion of planets in the solar system can usually be assumed to be
deterministic. An interesting special case of deterministic systems with continuous
state space are chaotic systems. These systems are so sensitive to their initial values
that even knowing these to arbitrarily high, but finite, precisions does not allow one to

i
i

“oce” — 2014/5/7 — 15:52 — page 9 — #9 i
i

i
i

i
i

1.1. DYNAMIC SYSTEM CLASSES 9

predict the complete future of the system: only the near future can be predicted. The
partial differential equations used in weather forecast models have this property, and
one well-known chaotic system of ODE, the Lorenz attractor, was inspired by these.

Note that also games like chess can be interpreted as dynamic systems. Here the
evolution is neither deterministic nor stochastic, but determined by the actions of an
adverse player. If we assume that the adversary always chooses the worst possible
control action against us, we enter the field of game theory, which in continuous state
spaces and engineering applications is often denoted by robust optimal control.

Open-Loop vs Closed-Loop Controlled Systems

When choosing the inputs of a controlled dynamic system, one first way is decide in
advance, before the process starts, which control action we want to apply at which time
instant. This is called open-loop control in the systems and control community, and
has the important property that the control u is a function of time only and does not
depend on the current system state.

A second way to choose the controls incorporates our most recent knowledge about
the system state which we might observe with the help of measurements. This knowl-
edge allows us to apply feedback to the system by adapting the control action according
to the measurements. In the systems and control community, this is called closed-loop
control, but also the more intuitive term feedback control is used. It has the impor-
tant property that the control action does depend on the current state. The map from
the state to the control action is called a feedback control policy. In case this policy
optimizes our optimization objective, it is called the optimal feedback control policy.

Open-loop control can be compared to a cooking instruction that says: cook the
potatos for 25 minutes in boiling water. A closed-loop, or feedback control of the same
process would for example say: cook the potatos in boiling water until they are so
soft that they do not attach anymore to a fork that you push into them. The feedback
control approach promises the better result, but requires more work as we have to take
the measurements.

This lecture is mainly concerned with numerical methods of how to compute op-
timal open-loop controls for given objective and constraints. But the last part of the
lecture is concerned with a powerful method to approximate the optimal feedback con-
trol policy: model predictive control, a feedback control technique that is based on the
repeated solution of open-loop optimal control problems.

Focus of This Script

In this script we have a strong focus on deterministic systems with continuous state and
control spaces. Mostly, we consider discrete time systems, while in a follow up lecture
on numerical optimal control we discuss the treatment of continuous time systems in
much more detail.

The main reason for our focus on continuous state and control spaces is that the
resulting optimal control problems can efficiently be treated by derivative-based opti-
mization methods. They are thus tremendously easier to solve than most other classes,
both in terms of the solvable system sizes and of computational speed. Also, these

i
i

“oce” — 2014/5/7 — 15:52 — page 10 — #10 i
i

i
i

i
i

10 CHAPTER 1. INTRODUCTION

continuous optimal control problems comprise the important class of convex optimal
control problems, which allow us to find a global solution reliably and fast. Convex
optimal control problems are important in their own right, but also serve as an ap-
proximation of nonconvex optimal control problems within Newton-type optimization
methods.

1.2 Continuous Time Systems
Most systems of interest in science and engineering are described in form of differential
equations which live in continuous time. On the other hand, all numerical simulation
methods have to discretize the time interval of interest in some form or the other and
thus effectively generate discrete time systems. We will thus only briefly sketch some
relevant properties of continuous time systems in this section, and sketch how they can
be transformed into discrete time systems. Throughout the lecture, we will mainly be
concerned with discrete time systems, while we occasionally come back to the contin-
uous time case.

Ordinary Differential Equations

A controlled dynamic system in continuous time can in the simplest case be described
by an ordinary differential equation (ODE) on a time interval [tinit, tfin] by

ẋ(t) = f(x(t), u(t), t), t ∈ [tinit, tfin] (1.1)

where t ∈ R is the time, u(t) ∈ Rnu are the controls, and x(t) ∈ Rnx is the state. The
function f is a map from states, controls, and time to the rate of change of the state,
i.e. f : Rnx × Rnu × [tinit, tfin] → Rnx . Due to the explicit time dependence of the
function f , this is a time-variant system.

We are first interested in the question if this differential equation has a solution if the
initial value x(tinit) is fixed and also the controls u(t) are fixed for all t ∈ [tinit, tfin]. In
this context, the dependence of f on the fixed controls u(t) is equivalent to a a further
time-dependence of f , and we can redefine the ODE as ẋ = f̃(x, t) with f̃(x, t) :=
f(x, u(t), t). Thus, let us first leave away the dependence of f on the controls, and just
regard the time-dependent uncontrolled ODE:

ẋ(t) = f(x(t), t), t ∈ [tinit, tfin]. (1.2)

Initial Value Problems

An initial value problem (IVP) is given by (1.2) and the initial value constraint x(tinit) =
xinit with some fixed parameter xinit. Existence of a solution to an IVP is guaranteed
under continuity of f with respect to to x and t according to a theorem from 1886 that
is due to Giuseppe Peano. But existence alone is of limited interest as the solutions
might be non-unique.

Example 1 (Non-Unique ODE Solution) The scalar ODE with f(x) =
√
|x(t)| can

stay for an undetermined duration in the point x = 0 before leaving it at an arbitrary

i
i

“oce” — 2014/5/7 — 15:52 — page 11 — #11 i
i

i
i

i
i

1.2. CONTINUOUS TIME SYSTEMS 11

time t0. It then follows a trajectory x(t) = (t − t0)2/4 that can be easily shown
to satisfy the ODE (1.2). We note that the ODE function f is continuous, and thus
existence of the solution is guaranteed mathematically. However, at the origin, the
derivative of f approaches infinity. It turns out that this is the reason which causes the
non-uniqueness of the solution.

As we are only interested in systems with well-defined and deterministic solutions,
we would like to formulate only ODE with unique solutions. Here helps the following
theorem by Charles Émile Picard (1890) and Ernst Leonard Lindelöf (1894).

Theorem 1 (Existence and Uniqueness of IVP) Regard the initial value problem (1.2)
with x(tinit) = xinit, and assume that f : Rnx × [tinit, tfin]→ Rnx is continuous with
respect to x and t. Furthermore, assume that f is Lipschitz continuous with respect to
x, i.e., that there exists a constant L such that for all x, y ∈ Rnx and all t ∈ [tinit, tfin]

‖f(x, t)− f(y, t)‖ ≤ L‖x− y‖. (1.3)

Then there exists a unique solution x : [tinit, tfin]→ Rnx of the IVP.

Lipschitz continuity of f with respect to x is not easy to check. It is much easier to
verify if a function is differentiable. It is therefore a helpful fact that every function f
that is differentiable with respect to x is also locally Lipschitz continuous, and one can
prove the following corollary to the Theorem of Picard-Lindelöf.

Corollary 1 (Local Existence and Uniqueness) Regard the same initial value prob-
lem as in Theorem 1, but instead of global Lipschitz continuity, assume that f is con-
tinuously differentiable with respect to x for all t ∈ [tinit, tfin]. Then there exists a
possibly shortened, but non-empty interval [tinit, t

′
fin] with t′fin ∈ (tinit, tfin] on which

the IVP has a unique solution.

Note that for nonlinear continuous time systems – in contrast to discrete time sys-
tems – it is very easily possible to obtain an “explosion”, i.e., a solution that tends to
infinity for finite times, even with innocently looking and smooth functions f .

Example 2 (Explosion of an ODE) Regard the scalar example f(x) = x2 with tinit =
0 and xinit = 1, and let us regard the interval [tinit, tfin] with tfin = 10. The IVP has the
explicit solution x(t) = 1/(1−t), which is only defined on the half open interval [0, 1),
because it tends to infinity for t → 1. Thus, we need to choose some t′fin < 1 in order
to have a unique and finite solution to the IVP on the shortened interval [tinit, t

′
fin].

The existence of this local solution is guaranteed by the above corollary. Note that the
explosion in finite time is due to the fact that the function f is not globally Lipschitz
continuous, so Theorem 1 is not applicable.

Discontinuities with Respect to Time

It is important to note that the above theorem and corollary can be extended to the case
that there are finitely many discontinuities of f with respect to t. In this case the ODE
solution can only be defined on each of the continuous time intervals separately, while
the derivative of x is not defined at the time points at which the discontinuities of f

i
i

“oce” — 2014/5/7 — 15:52 — page 12 — #12 i
i

i
i

i
i

12 CHAPTER 1. INTRODUCTION

occur, at least not in the strong sense. But the transition from one interval to the next
can be determined by continuity of the state trajectory, i.e. we require that the end state
of one continuous initial value problem is the starting value of the next one.

The fact that unique solutions still exist in the case of discontinuities is important
because, first, many optimal control problems have discontinuous control trajectories
u(t) in their solution, and, second, many algorithms discretize the controls as piecewise
constant functions which have jumps at the interval boundaries. Fortunately, this does
not cause difficulties for existence and uniqueness of the IVPs.

Linear Time Invariant (LTI) Systems

A special class of tremendous importance are the linear time invariant (LTI) systems.
These are described by an ODE of the form

ẋ = Ax+Bu (1.4)

with fixed matrices A ∈ Rnx×nx and B ∈ Rnx×nu . LTI systems are one of the
principal interests in the field of automatic control and a vast literature exists on LTI
systems. Note that the function f(x, u) = Ax + Bu is Lipschitz continuous with
respect to x with Lipschitz constant L = ‖A‖, so that the global solution to any initial
value problem with a piecewise continuous control input can be guaranteed.

Many important notions such as controllability or stabilizability, and computational
results such as the step response or frequency response function can be defined in terms
of the matrices A and B alone. Note that in the field of linear system analysis and
control, usually also output equations y = Cx are present, where the outputs y may be
the only physically relevant quantities. Only the linear operator from u to y - the input-
output-behaviour - is of interest, while the state x is just an intermediate quantity. In
that context, the states are not even unique, because different state space realizations of
the same input-output behavior exist. In this lecture, however, we are not interested in
input-outputs-behaviours, but assume that the state is the principal quantity of interest.
Output equations are not part of the models in this lecture. If one wants to make the
connection to the LTI literature, one might set C = I.

Zero Order Hold and Solution Map

In the age of digital control, the inputs u are often generated by a computer and imple-
mented at the physical system as piecewise constant between two sampling instants.
This is called zero order hold. The grid size is typically constant, say of fixed length
∆t > 0, so that the sampling instants are given by tk = k ·∆t. If our original model is
a differentiable ODE model, but we have piecewise constant control inputs with fixed
values u(t) = uk wtih uk ∈ Rnu on each interval t ∈ [tk, tk+1], we might want to
regard the transition from the state x(tk) to the state x(tk+1) as a discrete time sys-
tem. This is indeed possible, as the ODE solution exists and is unique on the interval
[tk, tk+1] for each initial value x(tk) = xinit.

i
i

“oce” — 2014/5/7 — 15:52 — page 13 — #13 i
i

i
i

i
i

1.2. CONTINUOUS TIME SYSTEMS 13

If the original ODE system is time-invariant, it is enough to regard one initial value
problem with constant control u(t) = uconst

ẋ(t) = f(x(t), uconst), t ∈ [0,∆t], with x(0) = xinit. (1.5)

The unique solution x : [0,∆t]→ Rnx to this problem is a function of both, the initial
value xinit and the control uconst, so we might denote the solution by

x(t;xinit, uconst), for t ∈ [0,∆t]. (1.6)

This map from (xinit, uconst) to the state trajectory is called the solution map. The final
value of this short trajectory piece, x(∆t;xinit, uconst), is of major interest, as it is the
point where the next sampling interval starts. We might define the transition function
fdis : Rnx × Rnu → Rnx by fdis(xinit, uconst) = x(∆t;xinit, uconst). This function
allows us to define a discrete time system that uniquely describes the evolution of the
system state at the sampling instants tk:

x(tk+1) = fdis(x(tk), uk). (1.7)

Solution Map of Linear Time Invariant Systems

Let us regard a simple and important example: for linear continuous time systems

ẋ = Ax+Bu

with initial value xinit at tinit = 0, and constant control input uconst, the solution map
x(t;xinit, uconst) is explicitly given as

x(t;xinit, uconst) = exp(At)xinit +

∫ t

0

exp(A(t− τ))Buconstdτ,

where exp(A) is the matrix exponential. It is interesting to note that this map is well
defined for all times t ∈ R, as linear systems cannot explode. The corresponding
discrete time system with sampling time ∆t is again a linear time invariant system, and
is given by

fdis(xk, uk) = Adisxk +Bdisuk (1.8)

with

Adis = exp(A∆t) and Bdis =

∫ ∆t

0

exp(A(∆t− τ))Bdτ. (1.9)

One interesting observation is that the discrete time system matrix Adis resulting from
the solution of an LTI system in continuous time is by construction an invertible matrix,
with inverse A−1

dis = exp(−A∆t). For systems with strongly decaying dynamics, how-
ever, the matrix Adis might have some very small eigenvalues and will thus be nearly
singular.

i
i

“oce” — 2014/5/7 — 15:52 — page 14 — #14 i
i

i
i

i
i

14 CHAPTER 1. INTRODUCTION

Sensitivities

In the context of optimal control, derivatives of the dynamic system simulation are
needed for nearly all numerical algorithms. Following Theorem 1 and Corollary 1 we
know that the solution map to the IVP (1.5) exists on an interval [0,∆t] and is unique
under mild conditions even for general nonlinear systems. But is it also differentiable
with respect to the initial value and control input?

In order to discuss the issue of derivatives, which in the dynamic system context
are often called sensitivities, let us first ask what happens if we call the solution map
with different inputs. For small perturbations of the values (xinit, uconst), we still
have a unique solution x(t;xinit, uconst) on the whole interval t ∈ [0,∆t]. Let us
restrict ourselves to a neighborhood N of fixed values (xinit, uconst). For each fixed
t ∈ [0,∆t], we can now regard the well defined and unique solution map x(t; ·) : N →
Rnx , (xinit, uconst) 7→ x(t;xinit, uconst). A natural question to ask is if this map is
differentiable. Fortunately, it is possible to show that if f is m-times continuously
differentiable with respect to both x and u, then the solution map x(t; ·), for each
t ∈ [0,∆t], is also m-times continuously differentiable with respect to (xinit, uconst).

In the general nonlinear case, the solution map x(t;xinit, uconst) can only be gener-
ated by a numerical simulation routine. The computation of derivatives of this numer-
ically generated map is a delicate issue that we discuss in detail in a follow up course
on numerical optimal control. To mention already the main difficulty, note that most
numerical integration routines are adaptive, i.e., might choose to do different numbers
of integration steps for different IVPs. This renders the numerical approximation of
the map x(t;xinit, uconst) typically non-differentiable in the inputs xinit, uconst. Thus,
multiple calls of a black-box integrator and application of finite differences might result
in very wrong derivative approximations.

Numerical Integration Methods

A numerical simulation routine that approximates the solution map is often called an in-
tegrator. A simple but very crude way to generate an approximation for x(t;xinit, uconst)
for t ∈ [0,∆t] is to perform a linear extrapolation based on the time derivative ẋ =
f(x, u) at the initial time point:

x̃(t;xinit, uconst) = xinit + tf(xinit, uconst), t ∈ [0,∆t]. (1.10)

This is called one Euler integration step. For very small ∆t, this approximation be-
comes very good. In fact, the error x̃(∆t;xinit, uconst) − x(∆t;xinit, uconst) is of
second order in ∆t. This motivated Leonhard Euler to perform several steps of smaller
size, and propose what is now called the Euler integration method. We subdivide the
interval [0,∆t] into M subintervals each of length h = ∆t/M , and perform M such
linear extrapolation steps consecutively, starting at x̃0 = xinit:

x̃j+1 = x̃j + hf(x̃j , uconst), j = 0, . . . ,M − 1. (1.11)

It can be proven that the Euler integration method is stable, i.e. that the propagation of
local errors is bounded with a constant that is independent of the step size h. Therefore,

i
i

“oce” — 2014/5/7 — 15:52 — page 15 — #15 i
i

i
i

i
i

1.3. DISCRETE TIME SYSTEMS 15

the approximation becomes better and better when we decrease the step size h: since
the consistency error in each step is of order h2, and the total number of steps is of order
∆t/h, the accumulated error in the final step is of order h∆t. As this is linear in the
step size h, we say that the Euler method has the order one. Taking more steps is more
accurate, but also needs more computation time. One measure for the computational
effort of an integration method is the number of evaluations of f , which for the Euler
method grows linearly with the desired accuracy.

In practice, the Euler integrator is rarely competitive, because other methods exist
that deliver the desired accuracy levels at much lower computational cost. We discuss
several numerical simulation methods later, but present here already one of the most
widespread integrators, the Runge-Kutta Method of Order Four, which we will often
abbreviate as RK4. One step of the RK4 method needs four evaluations of f and stores
the results in four intermediate quantities ki ∈ Rnx , i = 1, . . . , 4. Like the Euler
integration method, the RK4 also generates a sequence of values x̃j , j = 0, . . . ,M ,
with x̃0 = xinit. At x̃j , and using the constant control input uconst, one step of the
RK4 method proceeds as follows:

k1 = f(x̃j , uconst) (1.12a)

k2 = f(x̃j +
h

2
k1, uconst) (1.12b)

k3 = f(x̃j +
h

2
k2, uconst) (1.12c)

k4 = f(x̃j + h k3, uconst) (1.12d)

x̃j+1 = x̃j +
h

6
(k1 + 2k2 + 2k3 + k4) (1.12e)

One step of RK4 is thus as expensive as four steps of the Euler method. But it can be
shown that the accuracy of the final approximation x̃M is of order h4∆t. In practice,
this means that the RK4 method usually needs tremendously fewer function evaluations
than the Euler method to obtain the same accuracy level.

From here on, and throughout the major part of the lecture, we will leave the field
of continuous time systems, and directly assume that we control a discrete time sys-
tem xk+1 = fdis(xk, uk). Let us keep in mind, however, that the transition map
fdis(xk, uk) is usually not given as an explicit expression but can instead be a rela-
tively involved computer code with several intermediate quantities. In the exercises of
this lecture, we will usually discretize the occuring ODE systems by using only one
Euler or RK4 step per control interval, i.e. use M = 1 and h = ∆t. The RK4 step
often gives already a sufficient approximation at relatively low cost.

1.3 Discrete Time Systems
Let us now discuss in more detail the discrete time systems that are at the basis of the
control problems in the first part of this lecture. In the general time-variant case, these
systems are characterized by the dynamics

xk+1 = fk(xk, uk), k = 0, 1, . . . , N − 1 (1.13)

i
i

“oce” — 2014/5/7 — 15:52 — page 16 — #16 i
i

i
i

i
i

16 CHAPTER 1. INTRODUCTION

on a time horizon of length N , with N control input vectors u0, . . . , uN−1 ∈ Rnu and
(N + 1) state vectors x0, . . . , xN ∈ Rnx .

If we know the initial state x0 and the controls u0, . . . , uN−1 we could recursively
call the functions fk in order to obtain all other states, x1, . . . , xN . We call this a
forward simulation of the system dynamics.

Definition 1 (Forward simulation) The forward simulation is the map

fsim : Rnx+Nnu → R(N+1)nx

(x0;u0, u1, . . . , uN−1) 7→ (x0, x1, x2, . . . , xN)
(1.14)

that is defined by solving Equation (1.13) recursively for all k = 0, 1, . . . , N − 1.

The inputs of the forward simulation routine are the initial value x0 and the controls
uk for k = 0, . . . , N − 1. In many practical problems we can only choose the controls
while the initial value is fixed. Though this is a very natural assumption, it is not the
only possible one. In optimization, we might have very different requirements: We
might, for example, have a free initial value that we want to choose in an optimal way.
Or we might have both a fixed initial state and a fixed terminal state that we want to
reach. We might also look for periodic sequences with x0 = xN , but do not know
x0 beforehand. All these desires on the initial and the terminal state can be expressed
by suitable constraints. For the purpose of this manuscript it is important to note that
the fundamental equation that is characterizing a dynamic optimization problem are
the system dynamics stated in Equation (1.13), but no initial value constraint, which is
optional.

Linear Time Invariant (LTI) Systems

As discussed already for the continuous time case, linear time invariant (LTI) systems
are not only one of the simplest possible dynamic system classes, but also have a rich
and beautiful history. In the discrete time case, they are determined by the system
equation

xk+1 = Axk +Buk, k = 0, 1, . . . , N − 1. (1.15)

with fixed matrices A ∈ Rnx×nx and B ∈ Rnx×nu . An LTI system is asymptotically
stable if all eigenvalues of the matrix A are strictly inside the unit disc of the com-
plex plane, i.e. have a modulus smaller than one. It is easy to show that the forward
simulation map for an LTI system on a horizon with length N is given by

fsim(x0;u0, . . . , uN−1) =

x0

x1

x2

...
xN

 =

x0

Ax0 +Bu0

A2x0 +ABu0 +Bu1

...
ANx0 +

∑N−1
k=0 AN−1−kBuk

In order to check controllability, due to linearity, one might ask the question if after N
steps any terminal state xN can be reached from x0 = 0 by a suitable choice of control

i
i

“oce” — 2014/5/7 — 15:52 — page 17 — #17 i
i

i
i

i
i

1.3. DISCRETE TIME SYSTEMS 17

inputs. Because of

xN =
[
AN−1B AN−2B · · · B

]︸ ︷︷ ︸
=CN

u0

u1

...
uN−1

this is possible if and only if the matrix CN ∈ Rnx×Nnu has the rank nx. Increasing N
can only increase the rank, but one can show that the maximum possible rank is already
reached for N = nx, so it is enough to check if the so called controllability matrix Cnx

has the rank nx.

Eigenvalues and Eigenvectors of LTI Systems

Every square matrix A ∈ Rnx×nx can be brought into the Jordan canonical form A =
QJQ−1 with non-singular Q ∈ Cnx×nx and J block diagonal, consisting of m-Jordan
blocks Ji. Thus, it holds that

J =

J1

J2

. . .
Jm

 with Ji =

λi 1

λi 1
.

λi

 .
Many of the Jordan blocks might just have size one, i.e. Ji = [λi]. To better understand
the uncontrolled system evolution with dynamics xk+1 = Axk and initial condition
x0 = xinit, one can regard the solution map xN = ANx0 in the eigenbasis, which
yields the expression

xN = Q JN (Q−1x0)

First, it is seen that all Jordan blocks evolve independently, after the initial condition is
represented in the eigenbasis. Second, a simple Jordan block Ji will just result in the
corresponding component being multiplied by a factor λNi . Third, for nontrivial Jordan
blocks, one obtains more complex expressions with N upper diagonals of the form

JNi =

λNi NλN−1
i · · · 1

λNi NλN−1
i

. . .

. . .

λNi

.

If one eigenvalue has a larger modulus |λi| than all others, the Jordan block JNi will
grow faster (or shrink slower) than the others for increasing N . The result is that the
corresponding eigenvector(s) will dominate the final state xN for large N , while all
others “die out”. Here, the second largest eigenvalues will result in the most slowly

i
i

“oce” — 2014/5/7 — 15:52 — page 18 — #18 i
i

i
i

i
i

18 CHAPTER 1. INTRODUCTION

decaying components, and their corresponding eigenvectors will keep a visible contri-
bution in xN the longest.

Interestingly, complex eigenvalues as well as eigenvectors appear in complex con-
jugate pairs. If an eigenvalue λi is complex, the (real part of) the corresponding eigen-
vector will perform oscillatory motion. To understand the behaviour of complex eigen-
vectors, let us regard a complex conjugate pair of simple eigenvalues λi and λj = λ̄i,
and their eigenvectors vi, vj ∈ Cnx , i.e. Avi = λivi and Avj = λ̄ivj . It is easy to see
that, because A is real, vj = v̄i is a possible choice for the eigenvector corresponding
to λ̄i. Then holds that Re{vi} = 1

2 (vi + vj). Therefore,

AN Re{vi} =
1

2
(λNi vi + λNj vj) =

1

2
(λNi vi + λ̄Ni v̄i) = Re{λNi vi}.

If we represent λi as λi = reφi (where the i in the exponent is the imaginary unit while
the other i remains just an integer index), then λNi = rNeNφi. If φ is a fraction of 2π,
there is an N such that Nφ = 2π, and after N iterations we will obtain the same real
part as in the original eigenvector, but multiplied with rN . We can conclude that the
real part of the eigenvector to a complex eigenvalue reφi performs a form of damped
or growing oscillatory motion with period duration N = 2π/φ and growth constant r.

Affine Systems and Linearizations along Trajectories

An important generalization of linear systems are affine time-varying systems of the
form

xk+1 = Akxk +Bkuk + ck, k = 0, 1, . . . , N − 1. (1.16)

These often appear as linearizations of nonlinear dynamic systems along a given refer-
ence trajectory. To see this, let us regard a nonlinear dynamic system and some given
reference trajectory values x̄0, . . . , x̄N−1 as well as ū0, . . . , ūN−1. Then the Taylor
expansion of each function fk at the reference value (x̄k, ūk) is given by

(xk+1−x̄k+1) ≈ ∂fk
∂x

(x̄k, ūk)(xk−x̄k)+
∂fk
∂u

(x̄k, ūk)(uk−ūk)+(fk(x̄k, ūk)−x̄k+1)

thus resulting in affine time-varying dynamics of the form (1.16). Note that even for a
time-invariant nonlinear system the linearized dynamics becomes time-variant due to
the different linearization points on the reference trajectory.

It is an important fact that the forward simulation map of an affine system (1.16)
is again an affine function of the initial value and the controls. More specifically, this
affine map is for any N ∈ N given by:

xN = (AN−1 · · ·A0)x0 +

N−1∑
k=0

(
ΠN−1
j=k+1Aj

)
(Bkuk + ck) .

1.4 Optimization Problem Classes
Mathematical optimization refers to finding the best, or optimal solution among a set of
possible decisions, where optimality is defined with the help of an objective function.

i
i

“oce” — 2014/5/7 — 15:52 — page 19 — #19 i
i

i
i

i
i

1.4. OPTIMIZATION PROBLEM CLASSES 19

Some solution candidates are feasible, others not, and it is assumed that feasibility of
a solution candidate can be checked by evaluation of some constraint functions that
need for example be equal to zero. Like the field of dynamic systems, the field of
mathematical optimization comprises many different problem classes, which we will
briefly try to classify in this section.

Historically, optimization has been identified with programming, where a program
was understood as a deterministic plan, e.g., in logistics. For this reason, many of the
optimization problem classes have been given names that contain the words program
or programming. In this script we will often use these names and their abbreviations,
because they are still widely used. Thus, we use e.g. the term linear program (LP) as
a synonym for a linear optimization problem. It is interesting to note that the major
society for mathematical optimization, which had for decades the name Mathematical
Programming Society (MPS), changed its name in 2011 to Mathematical Optimization
Society (MOS), while it decided not to change the name of its major journal, that still
is called Mathematical Programming. In this script we chose a similarly pragmatic
approach to the naming conventions.

Finite vs Infinite Dimensional Optimization

An important divididing line in the field of optimization regards the dimension of the
space in which the decision variable, say x, is chosen. If x can be represented by
finitely many numbers, e.g. x ∈ Rn with some n ∈ N, we speak of a finite dimensional
optimization problem, otherwise, of an infinite dimensional optimization problem. The
second might also be referred to as optimization in function spaces. Discrete time
optimal control problems fall into the first, continuous time optimal control problems
into the second class.

Besides the dimension of the decision variable, also the dimension of the constraint
functions can be finite or infinite. If an infinite number of inequality constraints is
present while the decision variable is finite dimensional, one speaks of a semi-infinite
optimization problem. This class naturally arises in the context of robust optimiza-
tion, where one wants to find the best choice of the decision variable that satisfies the
constraints for all possible values of an unknown but bounded disturbance.

Continuous vs Integer Optimization

A second dividing line concerns the type of decision variables. These can be either con-
tinuous, like for example real valued vectors x ∈ Rn, or any other elements of a smooth
manifold. On the other hand, the decision variable can be discrete, or integer valued,
i.e. we have z ∈ Zn, or, when a set of binary choices has to be made, z ∈ {0, 1}n. In
this case one often also speaks of combinatorial optimization. If an optimization prob-
lem has both, continuous and integer variables, it is called a mixed-integer optimization
problem.

An important class of continuous optimization problems are the so called nonlinear

i
i

“oce” — 2014/5/7 — 15:52 — page 20 — #20 i
i

i
i

i
i

20 CHAPTER 1. INTRODUCTION

programs (NLP). They can be stated in the form

minimize
x ∈ Rn

f(x) (1.17a)

subject to g(x) = 0, (1.17b)
h(x) ≤ 0, (1.17c)

where f : Rn → R, g : Rn → Rng , and h : Rn → Rnh are assumed to be at least
once continuously differentiable. Note that we use function and variable names such as
f and x with a very different meaning than before in the context of dynamic systems.
In the first part of the lecture we discuss algorithms to solve this kind of optimization
problems, and the discrete time optimal control problems treated in this lecture can
also be regarded as a specially structured form of NLPs. Two important subclasses of
NLPs are the linear programs (LP), which have affine problem functions f, g, h, and
the quadratic programs (QP), which have affine constraint functions g, h and a more
general linear quadratic objective f(x) = cTx + 1

2x
THx with a symmetric matrix

H ∈ Rn×n.
A large class of mixed-integer optimization problems are the so called mixed inte-

ger nonlinear programs (MINLP), which can be stated as

minimize
x∈Rn

z∈Zm

f(x, z) (1.18a)

subject to g(x, z) = 0, (1.18b)
h(x, z) ≤ 0. (1.18c)

Among the MINLPs, an important special case arises if the problem functions f, g, h
are affine in both variables, x and z, which is called a mixed integer linear program
(MILP). If the objective is allowed to be linear quadratic, one speaks of a mixed inte-
ger quadratic program (MIQP). If in an MILP only integer variables are present, one
usually just calls it an integer program (IP). The field of (linear) integer programming
is huge and has powerful algorithms available. Most problems in logistics fall into this
class, a famous example being the travelling salesman problem, which concerns the
shortest closed path that one can travel through a given number of towns, visiting each
town exactly once.

An interesting class of mixed-integer optimization problems arises in the context
of optimal control of hybrid dynamic systems, which in the discrete time case can be
regarded a special case of MINLP. In continuous time, we enter the field of infinite di-
mensional mixed-integer optimization, often also called Mixed-integer optimal control
problems (MIOCP).

Convex vs Nonconvex Optimization

Arguably the most important dividing line in the world of optimization is between
convex and nonconvex optimization problems. Convex optimization problems are a

i
i

“oce” — 2014/5/7 — 15:52 — page 21 — #21 i
i

i
i

i
i

1.5. OVERVIEW AND NOTATION 21

subclass of the continuous optimization problems and arise if the objective function
is a convex function and the set of feasible points a convex set. In this case one can
show that any local solution, i.e. values for the decision variables that lead to the best
possible objective value in a neighborhood, is also a global solution, i.e. has the best
possible objective value among all feasible points. Practically very important is the fact
that convexity of a function or a set can be checked just by checking convexity of its
building blocks and if they are constructed in a way that preserves convexity.

Several important subclasses of NLPs are convex, such as LPs. Also QPs are con-
vex if they have a convex objective f . Another example are Quadratically Constrained
Quadratic Programs (QCQP) which have quadratic inequalities and whose feasible
set is the intersection of ellipsoids. Some other optimization problems are convex but
do not form part of the NLP family. Two widely used classes are second-order cone
programs (SOCP) and semi-definite programs (SDP) which have linear objective func-
tions but more involved convex feasible sets: for SOCP, it is the set of vectors which
have one component that is larger than the Euclidean norm of all the other components
and which it is called the second order cone, and for SDP it is the set of symmetric
matrices that are positive semi-definite, i.e. have all eigenvalues larger than zero. SDPs
are often used when designing linear feedback control laws. Also infinite dimensional
optimization problems such as optimal control problems in continuous time can be
convex under fortunate circumstances.

In this context, it is interesting to note that a sufficient condition for convexity of
an optimal control problem is that the underlying dynamic system is linear and that the
objective and constraints are convex in controls and states. On the other hand, optimal
control problems with underlying nonlinear dynamic systems, which are the focus of
this lecture, are usually nonconvex.

Optimization problems with integer variables can never be convex due to the non-
convexity of the set of integers. However, it is of great algorithmic advantage if mixed-
integer problems have a convex substructure in the sense that convex problems arise
when the integer variables are allowed to also take real values. These so called convex
relaxations are at the basis of nearly all competitive algorithms for mixed-integer opti-
mization. For example, linear integer programs can be solved very efficiently because
their convex relaxations are just linear programs, which are convex and can be solved
very efficiently.

1.5 Overview and Notation
The chapters of these lecture notes can roughly be divided into six major areas.

• Introduction

• Optimization Background

• Discrete Time Optimal Control

• Continuous Time Optimal Control

• Model Predictive Control and Moving Horizon Estimation

i
i

“oce” — 2014/5/7 — 15:52 — page 22 — #22 i
i

i
i

i
i

22 CHAPTER 1. INTRODUCTION

Notation

Within this lecture we use R for the set of real numbers, R+ for the non-negative ones
and R++ for the positive ones, Z for the set of integers, and N for the set of natural
numbers including zero, i.e. we identify N = Z+. The set of real-valued vectors of
dimension n is denoted by Rn, and Rn×m denotes the set of matrices with n rows
and m columns. By default, all vectors are assumed to be column vectors, i.e. we
identify Rn = Rn×1. We usually use square brackets when presenting vectors and
matrices elementwise. Because will often deal with concatenations of several vectors,
say x ∈ Rn and y ∈ Rm, yielding a vector in Rn+m, we abbreviate this concatena-
tion sometimes as (x, y) in the text, instead of the correct but more clumsy equivalent
notations [x>, y>]> or [

x
y

]
.

Square and round brackets are also used in a very different context, namely for intervals
in R, where for two real numbers a < b the expression [a, b] ⊂ R denotes the closed
interval containing both boundaries a and b, while an open boundary is denoted by a
round bracket, e.g. (a, b) denotes the open interval and [a, b) the half open interval
containing a but not b.

When dealing with norms of vectors x ∈ Rn, we denote by ‖x‖ an arbitrary norm,
and by ‖x‖2 the Euclidean norm, i.e. we have ‖x‖22 = x>x. We denote a weighted
Euclidean norm with a positive definite weighting matrix Q ∈ Rn×n by ‖x‖Q, i.e. we
have ‖x‖2Q = x>Qx. The L1 and L∞ norms are defined by ‖x‖1 =

∑n
i=1 |xi| and

‖x‖∞ = max{|x1|, . . . , |xn|}. Matrix norms are the induced operator norms, if not
stated otherwise, and the Frobenius norm ‖A‖F of a matrix A ∈ Rn×m is defined by
‖A‖2F = trace(AA>) =

∑n
i=1

∑m
j=1AijAij .

When we deal with derivatives of functions f with several real inputs and several
real outputs, i.e. functions f : Rn → Rm, x 7→ f(x), we define the Jacobian matrix
∂f
∂x (x) as a matrix in Rm×n, following standard conventions. For scalar functions with
m = 1, we denote the gradient vector as∇f(x) ∈ Rn, a column vector, also following
standard conventions. Slightly less standard, we generalize the gradient symbol to all
functions f : Rn → Rm even with m > 1, i.e. we generally define in this lecture

∇f(x) =
∂f

∂x
(x)> ∈ Rn×m.

Using this notation, the first order Taylor series is e.g. written as

f(x) = f(x̄) +∇f(x̄)>(x− x̄)) + o(‖x− x̄‖)

The second derivative, or Hessian matrix will only be defined for scalar functions f :
Rn → R and be denoted by∇2f(x).

For square symmetric matrices of dimension n we sometimes use the symbol Sn,
i.e. Sn = {A ∈ Rn×n|A = A>}. For any symmetric matrix A ∈ Sn we write A<0 if
it is a positive semi-definite matrix, i.e. all its eigenvalues are larger or equal to zero,
and A�0 if it is positive definite, i.e. all its eigenvalues are positive. This notation
is also used for matrix inequalities that allow us to compare two symmetric matrices
A,B ∈ Sn, where we define for example A<B by A−B<0.

i
i

“oce” — 2014/5/7 — 15:52 — page 23 — #23 i
i

i
i

i
i

1.5. OVERVIEW AND NOTATION 23

When using logical symbols, A ⇒ B is used when a proposition A implies a
proposition B. In words the same is expressed by “If A then B”. We write A⇔ B for
“A if and only if B”, and we sometimes shorten this to “A iff B”, with a double “f”,
following standard practice.

i
i

“oce” — 2014/5/7 — 15:52 — page 24 — #24 i
i

i
i

i
i

24 CHAPTER 1. INTRODUCTION

i
i

“oce” — 2014/5/7 — 15:52 — page 25 — #25 i
i

i
i

i
i

Chapter 2

Nonlinear Optimization

”The great watershed in optimization is not between linearity and nonlinearity, but
convexity and nonconvexity.”
R. Tyrrell Rockafellar

In this first part of the book we discuss several concepts from the field of mathe-
matical optimization that are important for optimal control. Our focus is on quickly
arriving at a point where the specific optimization methods for dynamic systems can be
treated, while the same material can be found in much greater detail in many excellent
textbooks on numerical optimization such as [NW06].

The reason for keeping this part on optimization self-contained and without ex-
plicit reference to optimal control is that this allows us to separate between the general
concepts of optimization and those specific to optimal control. For this reason, we use
in this part the language and notation that is customary in mathematical optimization.
The optimization problem with which we are concerned in this part is the standard
Nonlinear Program (NLP) that was already stated in the introduction:

minimize
x ∈ Rn

f(x) (2.1a)

subject to g(x) = 0, (2.1b)
h(x) ≤ 0, (2.1c)

where f : Rn → R, g : Rn → Rng , and h : Rn → Rnh are assumed to be twice
continuously differentiable. Function f is called the objective function, function g
is the vector of equality constraints, and h the vector of inequality constraints. We
start with some fundamental definitions. First, we collect all points that satisfy the
constraints in one set.

Definition 2 (Feasible set) The feasible set Ω is the set

Ω := {x ∈ Rn | g(x) = 0, h(x) ≤ 0} .

25

i
i

“oce” — 2014/5/7 — 15:52 — page 26 — #26 i
i

i
i

i
i

26 CHAPTER 2. NONLINEAR OPTIMIZATION

The points of interest in optimization are those feasible points that minimize the objec-
tive, and they come in two different variants.

Definition 3 (Global minimum) The point x∗ ∈ Rn is a global minimizer if and only
if (iff) x∗ ∈ Ω and ∀x ∈ Ω : f(x) ≥ f(x∗). The value f(x∗) is the global minimum.

Unfortunately, the global minimum is usually difficult to find, and most algorithms
allow us to only find local minimizers, and to verify optimality only locally.

Definition 4 (Local minimum) The point x∗ ∈ Rn is a local minimizer iff x∗ ∈
Ω and there exists a neighborhood N of x∗ (e.g., an open ball around x∗) so that
∀x ∈ Ω ∩N : f(x) ≥ f(x∗). The value f(x∗) is a local minimum.

In order to be able to state the optimality conditions that allow us to check if a candidate
point x∗ is a local minimizer or not, we need to describe the feasible set in the neigh-
borhood of x∗. It turns out that not all inequality constraints need to be considered
locally, but only the active ones.

Definition 5 (Active Constraints and Active Set) An inequality constraint hi(x) ≤
0 is called active at x∗ ∈ Ω iff hi(x∗) = 0 and otherwise inactive. The index set
A(x∗) ⊂ {1, . . . , nh} of active inequality constraint indices is called the ”active set”.

Often, the name active set also comprises all equality constraint indices, as equalities
could be considered to be always active.

Problem (2.1) is very generic. In Section 2.1 we review some special cases, which
still yield large classes of optimization problems. In order to choose the right algorithm
for a practical problem, we should know how to classify it and which mathematical
structures can be exploited. Replacing an inadequate algorithm by a suitable one can
reduce solution times by orders of magnitude. E.g., an important structure is convexity.
It allows us to to find global minima by searching for local minima only.

For the general case we review the first and second order conditions of optimality
in Sections 2.2 and 2.3, respectively.

2.1 Important Special Classes
Linear Optimization

An obvious special case occurs when the functions f , g, and h in (2.1) are linear,
resulting in a linear optimization problem (or Linear Program, LP)

minimize
x ∈ Rn

cTx (2.2a)

subject to Ax− b = 0, (2.2b)
Cx− d ≤ 0. (2.2c)

Here, the problem data are c ∈ Rn, A ∈ Rng×n, b ∈ Rng , C ∈ Rnh×n, and d ∈ Rnh .

i
i

“oce” — 2014/5/7 — 15:52 — page 27 — #27 i
i

i
i

i
i

2.1. IMPORTANT SPECIAL CLASSES 27

It is easy to show that one optimal solution of any LP – if the LP does have a
solution and is not unbounded – has to be a vertex of the polytope of feasible points.
Vertices can be represented and calculated by means of basis solution vectors, with
a basis of active inequality constraints. Thus, there are only finitely many vertices,
giving rise to Simplex algorithms that compare all possible solutions in a clever way.
However, naturally also the optimality conditions of Section 2.2 are valid and can be
used for algorithms, in particular interior point methods.

Quadratic Optimization

If in the general NLP formulation (2.1) the constraints g, h are affine, and the objective
is a linear-quadratic function, we call the resulting problem a Quadratic Optimization
Problem or Quadratic Program (QP). A general QP can be formulated as follows.

minimize
x ∈ Rn

cTx+
1

2
xTBx (2.3a)

subject to Ax− b = 0, (2.3b)
Cx− d ≤ 0. (2.3c)

Here, the problem data are c ∈ Rn, A ∈ Rng×n, b ∈ Rng , C ∈ Rnh×n, d ∈ Rnh , as
well as the “Hessian matrix” B ∈ Rn×n. Its name stems from the fact that ∇2f(x) =
B for f(x) = cTx+ 1

2x
TBx.

The eigenvalues of B decide on convexity or non-convexity of a QP, i.e., the pos-
sibility to solve it in polynomial time to global optimality, or not. If B<0 we speak
of a convex QP, and if B�0 we speak of a strictly convex QP. The latter class has the
property that it always has unique minimizers.

Convex Optimization

Roughly speaking, a set is convex, if all connecting lines lie inside the set:

Definition 6 (Convex Set) A set Ω ⊂ Rn is convex if

∀x, y ∈ Ω, t ∈ [0, 1] : x+ t(y − x) ∈ Ω. (2.4)

A function is convex, if all secants are above the graph:

Definition 7 (Convex Function) A function f : Ω → R is convex, if Ω is convex and
if

∀x, y ∈ Ω, t ∈ [0, 1] : f(x+ t(y − x)) ≤ f(x) + t(f(y)− f(x)). (2.5)

Note that this definition is equivalent to saying that the Epigraph of f , i.e., the set
{(x, s) ∈ Rn × R|x ∈ Ω, s ≥ f(x)}, is a convex set.

Definition 8 (Concave Function) A function f : Ω→ R is called “concave” if (−f)
is convex.

i
i

“oce” — 2014/5/7 — 15:52 — page 28 — #28 i
i

i
i

i
i

28 CHAPTER 2. NONLINEAR OPTIMIZATION

Note that the feasible set Ω of an optimization problem (2.1) is convex if the func-
tion g is affine and the functions hi are convex, as supported by the following theorem.

Theorem 2 (Convexity of Sublevel Sets) The sublevel set {x ∈ Ω | h(x) ≤ 0} of a
convex function h : Ω→ R is convex.

Definition 9 (Convex Optimization Problem) An optimization problem with convex
feasible set Ω and convex objective function f : Ω→ R is called a convex optimization
problem.

Theorem 3 (Local Implies Global Optimality for Convex Problems) For a convex
optimization problem, every local minimum is also a global one.

We leave the proofs of Theorems 2 and 3 as an exercise.
There exists a whole algebra of operations that preserve convexity of functions and

sets, which is excellently explained in the text books on convex optimization [BTN01,
BV04]. Here we only mention an important fact that is related to the positive curvature
of a function. Before we proceed, we introduce an important definition often used in
this book.

Definition 10 (Generalized Inequality for Symmetric Matrices) We write for a sym-
metric matrix B = BT , B ∈ Rn×n that “B<0” if and only if B is positive semi-
definite i.e., if ∀z ∈ Rn : zTBz ≥ 0, or, equivalently, if all (real) eigenvalues of the
symmetric matrix B are non-negative:

B<0⇐⇒ min eig (B) ≥ 0.

We write for two such symmetric matrices that “A<B” iff A − B<0, and “A4B” iff
B<A. We say B�0 iff B is positive definite, i.e., if ∀z ∈ Rn \ {0} : zTBz > 0, or,
equivalently, if all eigenvalues of B are positive

B�0⇐⇒ min eig(B) > 0.

Theorem 4 (Convexity for C2 Functions) Assume that f : Ω → R is twice contin-
uously differentiable and Ω convex and open. Then f is convex if and only if for all
x ∈ Ω the Hessian is positive semi-definite, i.e.,

∀x ∈ Ω : ∇2f(x)<0. (2.6)

Again, we leave the proof as an exercise. As an example, the quadratic objective
function f(x) = cTx + 1

2x
TBx of (2.3) is convex if and only if B<0, because ∀x ∈

Rn : ∇2f(x) = B.

2.2 First Order Optimality Conditions
An important question in continuous optimization is if a feasible point x∗ ∈ Ω satisfies
necessary first order optimality conditions. If it does not satisfy these conditions, x∗

i
i

“oce” — 2014/5/7 — 15:52 — page 29 — #29 i
i

i
i

i
i

2.2. FIRST ORDER OPTIMALITY CONDITIONS 29

cannot be a local minimizer. If it does satisfy these conditions, it is a hot candidate
for a local minimizer. If the problem is convex, these conditions are even sufficient
to guarantee that it is a global optimizer. Thus, most algorithms for nonlinear opti-
mization search for such points. The first order condition can only be formulated if a
technical “constraint qualification” is satisfied, which in its simplest and numerically
most attractive variant coms in the following form.

Definition 11 (LICQ) The linear independence constraint qualification (LICQ) holds
at x∗ ∈ Ω iff all vectors ∇gi(x∗) for i ∈ {1, . . . , ng} and ∇hi(x∗) for i ∈ A(x∗) are
linearly independent.

To give further meaning to the LICQ condition, let us combine all active inequalities
with all equalities in a map g̃ defined by stacking all functions on top of each other in
a colum vector as follows:

g̃(x) =

[
g(x)

hi(x)(i ∈ A(x∗))

]
. (2.7)

LICQ is then equivalent to full row rank of the Jacobian matrix ∂g̃
∂x (x∗).

The Karush-Kuhn-Tucker Optimality Conditions

This condition allows us to formulate the famous KKT conditions that are due to
Karush [Kar39] and Kuhn and Tucker [KT51].

Theorem 5 (KKT Conditions) If x∗ is a local minimizer of the NLP (2.1) and LICQ
holds at x∗ then there exist so called multiplier vectors λ ∈ Rng and µ ∈ Rnh with

∇f(x∗) +∇g(x∗)λ∗ +∇h(x∗)µ∗ = 0 (2.8a)
g(x∗) = 0 (2.8b)
h(x∗) ≤ 0 (2.8c)

µ∗ ≥ 0 (2.8d)
µ∗i hi(x

∗) = 0, i = 1, . . . , nh. (2.8e)

Regarding the notation used in the first line above, please observe that in this script we
use the gradient symbol ∇ also for functions g, h with multiple outputs, not only for
scalar functions like f . While ∇f is a column vector, in ∇g we collect the gradient
vectors of all output components in a matrix which is the transpose of the Jacobian, i.e.,
∇g(x) := ∂g

∂x (x)T . Note: The KKT conditions are the First order necessary conditions
for optimality (FONC) for constrained optimization, and are thus the equivalent to
∇f(x∗) = 0 in unconstrained optimization. In the special case of convex problems,
the KKT conditions are not only necessary for a local minimizer, but even sufficient
for a global minimizer. In fact, the following extremely important statement holds.

Theorem 6 Regard a convex NLP and a point x∗ at which LICQ holds. Then:

x∗ is a global minimizer⇐⇒ ∃λ, µ so that the KKT conditions hold.

i
i

“oce” — 2014/5/7 — 15:52 — page 30 — #30 i
i

i
i

i
i

30 CHAPTER 2. NONLINEAR OPTIMIZATION

The Lagrangian Function

Definition 12 (Lagrangian Function) We define the so called “Lagrangian function”
to be

L(x, λ, µ) = f(x) + λT g(x) + µTh(x). (2.9)

Here, we have used again the so called “Lagrange multipliers” or “dual variables”
λ ∈ Rng and µ ∈ Rnh . The Lagrangian function plays a crucial role in both convex and
general nonlinear optimization, not only as a practical shorthand within the KKT condi-
tions: using the definition of the Lagrangian, we have (2.8a)⇔ ∇xL(x∗, λ∗, µ∗) = 0.

Remark 1: In the absence of inequalities, the KKT conditions simplify to∇xL(x, λ) =
0, g(x) = 0, a formulation that is due to Lagrange and was much earlier known than
the KKT conditions.

Remark 2: The KKT conditions require the inequality multipliers µ to be positive,
µ ≥ 0, while the sign of the equality multipliers λ is arbitrary. An interesting observa-
tion is that for a convex problem with f and all hi convex and g affine, and for µ ≥ 0,
the Lagrangian function is a convex function in x. This often allows us to explicitly
find the unconstrained minimum of the Lagrangian for any given λ and µ ≥ 0, which
is called the Lagrange dual function, and which can be shown to be an underestimator
of the minimum. Maximizing this underestimator over all λ and µ ≥ 0 leads to the
concepts of weak and strong duality.

Complementarity

The last three KKT conditions (2.8c)-(2.8e) are called the complementarity conditions.
For each index i, they define an L-shaped set in the (hi, µi) space. This set is not a
smooth manifold but has a non-differentiability at the origin, i.e., if hi(x∗) = 0 and
also µ∗i = 0. This case is called a weakly active constraint. Often we want to exclude
this case. On the other hand, an active constraint with µ∗i > 0 is called strictly active.

Definition 13 Regard a KKT point (x∗, λ∗, µ∗). We say that strict complementarity
holds at this KKT point iff all active constraints are strictly active.

Strict complementarity is a favourable condition because, together with a second order
condition, it implies that the active set is stable against small perturbations. It also
makes many theorems easier to formulate and to prove, and is also required to prove
convergence of some numerical methods.

2.3 Second Order Optimality Conditions

In case of strict complementarity at a KKT point (x∗, λ∗, µ∗), the optimization problem
can locally be regarded to be a problem with equality constraints only, namely those
within the function g̃ defined in Equation (2.7). Though more complex second order
conditions can be formulated that are applicable even when strict complementarity does
not hold, we restrict ourselves here to this special case.

i
i

“oce” — 2014/5/7 — 15:52 — page 31 — #31 i
i

i
i

i
i

2.3. SECOND ORDER OPTIMALITY CONDITIONS 31

Theorem 7 (Second Order Optimality Conditions) Let us regard a point x∗ at which
LICQ holds together with multipliers λ∗, µ∗ so that the KKT conditions (2.8a)-(2.8e)
are satisfied and let strict complementarity hold. Regard a basis matrixZ ∈ Rn×(n−ng̃)

of the null space of ∂g̃∂x (x∗) ∈ Rng̃×n, i.e., Z has full column rank and ∂g̃
∂x (x∗)Z = 0.

Then the following two statements hold:

(a) If x∗ is a local minimizer, then ZT∇2
xL(x∗, λ∗, µ∗)Z<0.

(Second Order Necessary Condition, short : SONC)

(b) If ZT∇2
xL(x∗, λ∗, µ∗)Z�0, then x∗ is a local minimizer.

This minimizer is unique in its neighborhood, i.e., a strict local minimizer, and
stable against small differentiable perturbations of the problem data. (Second
Order Sufficient Condition, short: SOSC)

The matrix ∇2
xL(x∗, λ∗, µ∗) plays an important role in optimization algorithms and

is called the Hessian of the Lagrangian, while its projection on the null space of the
Jacobian, ZT∇2

xL(x∗, λ∗, µ∗)Z, is called the reduced Hessian.

Quadratic Problems with Equality Constraints

To illustrate the above optimality conditions, let us regard a QP with equality con-
straints only.

minimize
x ∈ Rn

cTx+
1

2
xTBx (2.10a)

subject to Ax+ b = 0. (2.10b)

We assume that A has full row rank i.e., LICQ holds. The Lagrangian is L(x, λ) =
cTx+ 1

2x
TBx+ λT (Ax+ b) and the KKT conditions have the explicit form

c + Bx + ATλ = 0 (2.11a)
b + Ax = 0. (2.11b)

This is a linear equation system in the variable (x, λ) and can be solved if the so called
KKT matrix [

B AT

A 0

]
is invertible. In order to assess if the unique solution (x∗, λ∗) of this linear system is a
minimizer, we need first to construct a basis Z of the null space of A, e.g., by a full QR
factorization of AT = QR with Q = (Y |Z) square orthonormal and R = (R̄T |0)T .
Then we can check if the reduced Hessian matrix ZTBZ is positive semidefinite. If
it is not, the objective function has negative curvature in at least one of the feasible
directions and x∗ cannot be a minimizer. If on the other hand ZTBZ�0 then x∗ is a
strict local minimizer. Due to convexity this would also be the global solution of the
QP.

i
i

“oce” — 2014/5/7 — 15:52 — page 32 — #32 i
i

i
i

i
i

32 CHAPTER 2. NONLINEAR OPTIMIZATION

Invertibility of the KKT Matrix and Stability under Perturbations

An important fact is the following. If the second order sufficient conditions for opti-
mality of Theorem 7 (b) hold, then it can be shown that the KKT-matrix[

∇2
xL(x∗, λ∗, µ∗) ∂g̃

∂x (x∗)T
∂g̃
∂x (x∗)

]
is invertible. This implies that the solution is stable against perturbations. To see why,
let us regard a perturbed variant of the optimization problem (2.1)

minimize
x ∈ Rn

f(x) + δTf x (2.12a)

subject to g(x) + δg = 0, (2.12b)
h(x) + δh ≤ 0, (2.12c)

with small vectors δf , δg, δh of appropriate dimensions that we summarize as δ =
(δf , δg, δh). If a solution exists for δ = 0, the question arises if a solution exists
also for small δ 6= 0, and how this solution depends on the perturbation δ. This is is
answered by the following theorem.

Theorem 8 (SOSC implies Stability of Solutions) Regard the family of perturbed op-
timization problems (2.12) and assume that for δ = 0 exists a local solution (x∗(0), λ∗(0), µ∗(0))
that satisfies LICQ, the KKT condition, strict complementarity, and the second order
sufficient condition of Theorem 7 (b). Then there exists an ε > 0 so that for all ‖δ‖ ≤ ε
exists a unique local solution (x∗(δ), λ∗(δ), µ∗(δ)) that depends differentiably on δ.
This local solution has the same active set as the nominal one, i.e., its inactive con-
straint multipliers remain zero and the active constraint multipliers remain positive.
The solution does not depend on the inactive constraint perturbations. If g̃ is the com-
bined vector of equalities and active inequalities, and λ̃ and δ̃2 the corresponding
vectors of multipliers and constraint perturbations, then the derivative of the solution
(x∗(δ), λ̃∗(δ)) with respect to (δ1, δ̃2) is given by

d

d(δ1, δ̃2)

[
x∗(δ)

λ̃∗(δ)

]∣∣∣∣
δ=0

= −
[
∇2
xL(x∗, λ∗, µ∗) ∂g̃

∂x (x∗)T
∂g̃
∂x (x∗)

]−1

(2.13)

This differentiability formula follows from differentiation of the necessary optimality
conditions of the parametrized optimization problems with respect to (δ1, δ̃2)

∇f(x∗(δ)) +
∂g̃

∂x
(x∗)T λ̃+ δ1 = 0 (2.14)

g̃(x∗(δ)) + δ̃2 = 0 (2.15)

Invertibility of the KKT matrix and stability of the solution under perturbations are
very useful facts for the applicability of Newton-type optimization methods that are
discussed in the next chapter.

i
i

“oce” — 2014/5/7 — 15:52 — page 33 — #33 i
i

i
i

i
i

2.3. SECOND ORDER OPTIMALITY CONDITIONS 33

Software: An excellent tool to formulate and solve convex optimization problems in
a MATLAB environment is CVX, which is available as open-source code and easy to
install.

Software for solving a QP Problem: MATLAB: quadprog. Commercial: CPLEX,
MOSEK. Open-source: CVX, qpOASES.

For anyone not really familiar with the concepts of nonlinear optimization that
are only very briefly outlined here, it is highly recommended to have a look at the
excellent Springer text book “Numerical Optimization” by Jorge Nocedal and Steve
Wright [NW06]. Who likes to know more about convex optimization than the much
too brief outline given in this script is recommended to have a look at the equally
excellent Cambridge University Press text book “Convex Optimization” by Stephen
Boyd and Lieven Vandenberghe [BV04], whose PDF is freely available.

i
i

“oce” — 2014/5/7 — 15:52 — page 34 — #34 i
i

i
i

i
i

34 CHAPTER 2. NONLINEAR OPTIMIZATION

i
i

“oce” — 2014/5/7 — 15:52 — page 35 — #35 i
i

i
i

i
i

Bibliography

[BTN01] A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimiza-
tion: Analysis, Algorithms, and Engineering Applications, volume 3 of
MPS/SIAM Series on Optimization. SIAM, 2001.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. University Press, Cam-
bridge, 2004.

[Kar39] W. Karush. Minima of Functions of Several Variables with Inequalities as
Side Conditions. Master’s thesis, Department of Mathematics, University of
Chicago, 1939.

[KT51] H.W. Kuhn and A.W. Tucker. Nonlinear programming. In J. Neyman, editor,
Proceedings of the Second Berkeley Symposium on Mathematical Statistics
and Probability, Berkeley, 1951. University of California Press.

[NW06] J. Nocedal and S.J. Wright. Numerical Optimization. Springer Series in
Operations Research and Financial Engineering. Springer, 2 edition, 2006.

35

