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In this work we introduce a novel tubing design for multiphase flow that minimizes gas bubble resistance. The design
termed “StarTube” has a lamella-like wall structure and was developed to prevent clogging by gas bubbles. This is
performed by forcing gas bubbles into the center of the tube by capillary forces, allowing liquid to bypass in the outer
grooves. It was found that the mobility of gas bubbles in such a tube is increased more than 1 order of magnitude.
The reason is that the contact line perpendicular to the direction of flow is minimized, reducing resistant effects related
to the contact linesin particular, contact angle hysteresis.

Introduction

Gas bubbles in fluidic systems and interconnections are a
widespread problem in microfluidics and at the interface between
microfluidic devices and macroscopic systems. Bubbles occur
when reservoirs are connected or exchanged, e.g., to print heads
or medical dosage systems. They can also appear as a product
during process operation, e.g., in direct methanol fuel cells1 or
due to degassing of dissolved gases in any fluidic system. Gas
bubbles add capacitive effects and pressure losses to the flow in
channels. The pressure losses scale with the capillary pressure
∆p ∼ σr-1 (surface tension σ; channel radius r) and thus increase
with miniaturization.2,3

Reasons for the pressure losses are hydrodynamic effects in
the vicinity of the contact line3 and contact angle dynamics and
hysteresis.4 Contact angle hysteresis is the static difference in
contact angle between an advancing and a receding contact line.
For a bubble in a tube, the front meniscus is bound by a receding
contact line while at the back an advancing contact line is placed.
Contact angle hysteresis induces a threshold force F onto a gas
bubble.5 It must be surmounted to move a bubble at all. The
force scales with the variation between advancing contact angle
θadv and the receding contact angle θrec, proportional to the
capillary pressure F ∼ σr-1(cos θadv - cos θrec).4,5

At a moving contact line further a dynamic change in contact
angle can be observed leading to a dynamic resistance. This
effect is still a topic of research and different laws for the relation
between velocity and contact angle are discussed.6,7 The
proportion of contact angle hysteresis and contact angle dynamics
depends strongly on the actual surface, roughness, and chemistry.8

In any case contact angle hysteresis dominates for the smallest
velocities, in particular, when a bubble starts moving and the

velocity is nearly zero. Both effects are related to the contact line
at the caps of a bubble and are independent (in the absence of
surfactants) of the length of the bubbles.9,10

Contact angle hysteresis can be measured with a droplet sitting
on a surface by evaluation of the minimum angle necessary to
move the droplet by gravity when tilting the surface. From
hydrophobic surfaces it is known that roughness increases the
contact angle (superhydrophobicity) and can decrease hysteresis
considerably;8 therefore, droplets move much more easily on
these surfaces (lotus effect).11 In experiments and simulations
it has already been found that the resistant force is stronger
perpendicular to roughness in the form of lateral grooves than
along those grooves.8,12

The presented StarTube exploits this effect and applies it to
bubbles in tubes to minimize their resistance to the flow. The
StarTube has grooves in the side walls that minimize the contact
line perpendicular to the direction of flow. Effects associated
with the contact line are reduced and the mobility is increased.
Gas bubbles can be removed from the tube by small forces even
in the direction opposite to the main flow, e.g., by buoyancy
against liquid flow from a reservoir with bubble flow back into
the reservoir. To achieve this behavior the star-shaped geometry
was designed in a way that capillary forces prevent a bubble
from moving into the grooves.

Working Principle of the StarTube

The star-shaped profile of the StarTube is built up from a
circular pattern of rectangles (Figure 1a.). Gas bubbles are forced
into the center of the tube by capillary forces (Figure 1b). The
centered bubble position ultimately enables the liquid to bypass
a bubble in the outer channels formed by the fingers of the profile.
In theory the contact line perpendicular to the flow direction
should be zero. In reality fabrication always leads to a small
rounding and therefore a small part of the contact line is left.
Nevertheless, the reduced contact line improves bubble mobility
significantly.
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Bubble Positions

The configuration a bubble might attain in a StarTubescentered
or clogging the whole cross section (Figure 2)sdepends on the
number of grooves and the contact angle θ. Conditions for centered
bubbles can be determined by considering the capillary pressure
pcap which must be constant over the entire surface of the bubble.
In the centered position, pcap must be lower than the maximum
capillary pressure pside the side channels can exert (Figure 1c)

pside > pcap (1)

Otherwise the enclosed gas would also enter into the side
channels. The surfaces of a long bubble in one of the side channels
can be regarded as cylindrical (Figure 1c). The maximum pressure
pside the surface can sustain is given by the contact angle and the
finger width a, as given by eq 2

pside ) σ 1
rs
) σ 2 cos θ

a
(2)

On the other hand, the capillary pressure of the bubble in the
central section pcap can be calculated by the integral theorem on
capillary surfaces (eq 3)13,14 if its shape is known

pcap ) σ S
A

(3)

In eq 3 S denotes the circumference and A the area of a bubbles
cross section. In the limit of the maximum capillary pressure,
the cross section is given by a series of N arcs with radius rs

(Figure 1c). Thus, pcap can be evaluated analytically using eq 3
as a function of N and θ for this case and compared to pside

according to eq 1. This leads to a necessary condition for centered
bubbles, relating the number of fingers and the contact angle of
a StarTube

N > π(arctan( 2 cos2 θ
π- 2θ+ 2 cos θ sin θ))-1

(4)

Eq 4 must be fulfilled in order to obtain centered bubbles in
a StarTube. It does not depend on the actual dimension of the
tubesas long as gravity does not decisively deform the bubble
shape. Computational fluid dynamics (CFD) simulations and
experimental results as presented in Figure 2 confirm this model.
The solid line in Figure 2 represents the case when both sides
of eq 4 are equal. Only StarTubes with parameters above the
graph lead to centered bubbles. At least six fingers are required
to force a bubble in a central position. Simulations were performed
with a volume of fluid method, that accounts for surface tension
and contact angles (ESI-CFD ACE+ (ESI-Group http://www.esi-
group.com/)). The deviation between experiments and theory
can be explained by the finite radii at the edges in the extruded
tube.

Fabrication

The experiments in this work were performed with a StarTube
made from PDMS. The tube with eight fingers and a width a )
1 mm and a depth b ) 2.5 mm was fabricated by extrusion
(Fabricated by MG-Silikon a St. Gobain Company, Lindau,
Germany). For quantitative experiments with water (viscosity η
) 1 × 10-3 Pa; σ ) 72.5 N m-1), the extruded tube was treated
with HMDSO plasma, leading to a temporary advancing contact
angle around 20° (AQUACER from P PLASMA ELECTRONIC
GmbH, Neuenburg, Germany). Though the dimensions of the
samples were relatively large, all effects were found as suggested
by theory.

Measurement of the Bubble Resistance

As pointed out, contact angle hysteresis leads to a threshold
force on bubbles in tubes. Here we document a bubble rise
experiment that shows that the threshold resistance is more than
1 order of magnitude smaller in the StarTube than in a
conventional circular tube. The mean velocity of a gas bubble
driven by buoyancy in an inclined tube was derived by measuring
the time a bubble needs to pass a defined distance.

In the StarTube, liquid can move in the outer grooves in the
opposite direction from that of a gas bubble. Thus for the StarTube
an experiment was set up with a closed tube including a gas
bubble. In contrast, a closed circular tube does not allow a gas
bubble to move at all, as liquid cannot bypass the bubble and
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Figure 1. Setup and working principle of the StarTube. (a) Cross section
of the StarTube: N rectangular grooves forming the fingers and a cavity
in the center. (b) Photograph of a bubble centered in a StarTube (N )
8; contact angle θ ) 0°; b ) 2.5 mm; a ) 1 mm). (c) Setup of a bubble
in the StarTube.

Figure 2. Theoretical prediction whether a bubble is centered or clogs
the channel completely. Diamonds show validations by CFD Simulations
(filled) clogged, open) centered). Crosses and quads mark performed
experiments using different mixtures of propyl alcohol and water (x )
centered, quad ) clogged, deviation in measured contact angles ∆θ ∼
(5°).
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the circular tube used for reference measurements was set up as
a closed loop.

In the experiments the viscous pressure loss of the moving
liquid must be balanced by the buoyant pressure ∆pbuoyant induced
by the bubble

∆pbuoyant )∆pvisc (5)

For a tilted StarTube with tilt angle R this can be rewritten
to

Fg sin Rlbub ) 2η lbub
U2

Aliq
2

Abub

Aliq
Vbub (6)

where U is the circumferential length of the star-shaped profile
and Abub and Aliq are the areas in the profile occupied by the
bubble and the liquid, respectively. In eq 6 the viscous pressure
loss ∆pvisc is calculated by the law of Hagen-Poiseuille for laminar
flow.15 The bubble velocity Vbub is a linear graph for a given
bubble length when plotted against the buoyant pressure that is
defined by the height difference along the bubble lbub sin R. It
would be a unique graph for all lengths when plotted against sin
R.

In the loop formed by the conventional tube (diameter 3 mm,
∼30 cm length) the viscous pressure drop ∆pvisc can be calculated
similarly and depends on the length of the tube but not on the
bubble length lbub. Therefore, the bubble velocity is a unique
linear function of the height difference over the bubble lbubsin R.

Experiments were performed for different bubble lengths for
the StarTube and the circular tube. Measured velocities are plotted
against the height difference over the bubble lbub sin R in Figure
3. The graphs are extrapolated toward zero bubble velocity. In
addition, a theoretical graph for a gas bubble of length 50 mm
is shown calculated by eq 6 with a slight deviation between
theory and experiment that lead from the simplicity of the model
for the laminar flow. The results in Figure 3 allow one to estimate
the resistant force onto the gas bubbles induced by contact angle
hysteresis given by the minimum height lbub sin Rmin necessary
for a bubble to start moving. From the derived values (Table 1)
it can be found that for the StarTube the resistant effect is more
than 1 order or magnitude smaller than for the conventional tube.
The reason is that the contact line perpendicular to the direction
of movement is minimized in the StarTube.

Conclusions
The presented StarTube is a novel tubing design for multiphase

flow with a rich field of application for fluidic interconnections,
in particular, between microfluidic devices and the environment.
It has been shown how the StarTube predictably separates gas
bubbles from the liquid flow and prevents clogging. At least six
fingers are necessary to achieve a centered position. The resistance
of gas bubbles is decisively reduced in the StarTube. This is
attributed to the reduced contact line resistance of gas bubbles
achieved by minimizing the contact line perpendicular to the
direction of movement only.
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Figure 3. Bubble velocities measured in bubble rise experiments.

Table 1. Derived Threshold Height l sin rmin until Bubbles Start
to Move

Star Tube circular tube

bubble length lbub [mm] 20 35 50 50 40
l sin Rmin [mm] <0.1 <0.1 <0.1 7.05 7.23
quality of regression [%] 99.9 99.9 99.9 99.0 98.2
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